direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C22⋊SD16, C23⋊6SD16, C24.174D4, C4⋊C4⋊2C23, (C2×C8)⋊8C23, D4.37(C2×D4), (C2×Q8)⋊1C23, C4.34C22≀C2, (C2×D4).292D4, C22⋊3(C2×SD16), C4.34(C22×D4), C22⋊C8⋊65C22, (C2×C4).216C24, (C22×C8)⋊34C22, (D4×C23).17C2, (C22×C4).416D4, C23.847(C2×D4), C22⋊Q8⋊59C22, D4⋊C4⋊69C22, C2.5(C22×SD16), (C22×SD16)⋊15C2, (C2×SD16)⋊65C22, (C2×D4).378C23, (C22×Q8)⋊12C22, C22.113C22≀C2, (C22×C4).954C23, (C23×C4).536C22, C22.476(C22×D4), C22.110(C8⋊C22), (C22×D4).560C22, C2.8(C2×C8⋊C22), (C2×C22⋊C8)⋊33C2, (C2×C4⋊C4)⋊45C22, (C2×C22⋊Q8)⋊51C2, (C2×D4⋊C4)⋊35C2, C2.34(C2×C22≀C2), (C2×C4).1090(C2×D4), SmallGroup(128,1729)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 1148 in 498 conjugacy classes, 124 normal (18 characteristic)
C1, C2 [×3], C2 [×4], C2 [×12], C4 [×4], C4 [×6], C22, C22 [×10], C22 [×76], C8 [×4], C2×C4 [×2], C2×C4 [×6], C2×C4 [×18], D4 [×8], D4 [×28], Q8 [×6], C23, C23 [×6], C23 [×88], C22⋊C4 [×4], C4⋊C4 [×2], C4⋊C4 [×5], C2×C8 [×4], C2×C8 [×4], SD16 [×16], C22×C4 [×2], C22×C4 [×4], C22×C4 [×6], C2×D4 [×12], C2×D4 [×50], C2×Q8 [×2], C2×Q8 [×5], C24, C24 [×22], C22⋊C8 [×4], D4⋊C4 [×8], C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22⋊Q8 [×4], C22⋊Q8 [×2], C22×C8 [×2], C2×SD16 [×8], C2×SD16 [×8], C23×C4, C22×D4 [×6], C22×D4 [×11], C22×Q8, C25, C2×C22⋊C8, C2×D4⋊C4 [×2], C22⋊SD16 [×8], C2×C22⋊Q8, C22×SD16 [×2], D4×C23, C2×C22⋊SD16
Quotients:
C1, C2 [×15], C22 [×35], D4 [×12], C23 [×15], SD16 [×4], C2×D4 [×18], C24, C22≀C2 [×4], C2×SD16 [×6], C8⋊C22 [×2], C22×D4 [×3], C22⋊SD16 [×4], C2×C22≀C2, C22×SD16, C2×C8⋊C22, C2×C22⋊SD16
Generators and relations
G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=d3 >
(1 12)(2 13)(3 14)(4 15)(5 16)(6 9)(7 10)(8 11)(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 25)(24 26)
(2 28)(4 30)(6 32)(8 26)(9 22)(11 24)(13 18)(15 20)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 25)(2 28)(3 31)(4 26)(5 29)(6 32)(7 27)(8 30)(9 22)(10 17)(11 20)(12 23)(13 18)(14 21)(15 24)(16 19)
G:=sub<Sym(32)| (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26), (2,28)(4,30)(6,32)(8,26)(9,22)(11,24)(13,18)(15,20), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,25)(2,28)(3,31)(4,26)(5,29)(6,32)(7,27)(8,30)(9,22)(10,17)(11,20)(12,23)(13,18)(14,21)(15,24)(16,19)>;
G:=Group( (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26), (2,28)(4,30)(6,32)(8,26)(9,22)(11,24)(13,18)(15,20), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,25)(2,28)(3,31)(4,26)(5,29)(6,32)(7,27)(8,30)(9,22)(10,17)(11,20)(12,23)(13,18)(14,21)(15,24)(16,19) );
G=PermutationGroup([(1,12),(2,13),(3,14),(4,15),(5,16),(6,9),(7,10),(8,11),(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,25),(24,26)], [(2,28),(4,30),(6,32),(8,26),(9,22),(11,24),(13,18),(15,20)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,25),(2,28),(3,31),(4,26),(5,29),(6,32),(7,27),(8,30),(9,22),(10,17),(11,20),(12,23),(13,18),(14,21),(15,24),(16,19)])
Matrix representation ►G ⊆ GL5(𝔽17)
16 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 7 | 16 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 |
0 | 5 | 12 | 0 | 0 |
0 | 5 | 5 | 0 | 0 |
0 | 0 | 0 | 7 | 15 |
0 | 0 | 0 | 7 | 10 |
16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 16 |
G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,16],[16,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,7,0,0,0,0,16],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[1,0,0,0,0,0,5,5,0,0,0,12,5,0,0,0,0,0,7,7,0,0,0,15,10],[16,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,16] >;
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2S | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | ··· | 8H |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | D4 | SD16 | C8⋊C22 |
kernel | C2×C22⋊SD16 | C2×C22⋊C8 | C2×D4⋊C4 | C22⋊SD16 | C2×C22⋊Q8 | C22×SD16 | D4×C23 | C22×C4 | C2×D4 | C24 | C23 | C22 |
# reps | 1 | 1 | 2 | 8 | 1 | 2 | 1 | 3 | 8 | 1 | 8 | 2 |
In GAP, Magma, Sage, TeX
C_2\times C_2^2\rtimes SD_{16}
% in TeX
G:=Group("C2xC2^2:SD16");
// GroupNames label
G:=SmallGroup(128,1729);
// by ID
G=gap.SmallGroup(128,1729);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,448,253,758,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations